C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name: Classical Mechanics

Subject Code: 58	SC04CLM1	Branch: M.Sc. (Mathematics)	
Semester: 4	Date: 23/09/2022	Time: 02:30 To 05:30	Marks: 70

Instructions:

Q-1

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I Attempt the following questions

(07)

			01
		a. Define degree of freedom	01
		b. Define: Center of system.	01
		c. State Hamilton's principle for a system	01
		d. What do you mean by ignorable coordinates?	01
		e. Write the difference between Lagrangian and Hamiltonian of mechanical system.	01
		f . What is virtual displacement?	01
		g Define: Linear momentum	01
		g. Denne. Entear momentum.	UI
Q-2		Attempt all questions	(14)
	Α	State and prove conservation theorem of linear momentum.	04
	B	State and prove Lagrange's equation of motion.	10
		OR	
0-2		Attempt all questions	(14)
x -	Α	State and prove D'Alembert's principle	07
	R	Obtain Lagrange's equation of motion for simple pendulum	07
03	D	Attempt all questions	(14)
Q-3		Show that Learence's equation of motion is invariant under an ordinate	(14)
	A	Show that Lagrange's equation of motion is invariant under co-ordinate	07
	_	transformation.	. –
	В	Derive Euler Lagrange's equation using Hamilton's principal	07
		OR	
Q-3	Α	State and prove conservation theorem of angular momentum.	07
	B	Show that the bead sliding on a uniform rotating wire follows the	07
		exponential curve.	

SECTION -	Π
-----------	---

Q-4		Attempt the following questions	(07)
•		a. What is dual transformation?	01
		b. Define cyclic coordinates.	01
		c. Define: Phase space.	01
		d State analog of the Jacobi's identity for Lagrange's bracket	02
		Define: Lagrange's bracket	02
0-5		Attempt all questions	(14)
χv	Α	Let a spring attached to a fixed point on the other hand a particle of mass	06
		<i>m</i> is attached Find Hamilton's equation of motion of particle	00
	R	State and prove Hamilton's equation of motion	06
	C	Define cyclic coordinates	00
	C	Define cyclic coordinates.	02
05		UK Attempt all avastions	
Q-3		Attempt an questions Write any three menorities of Hemiltonian function class justify it	07
	A	write any three properties of Hamiltonian function also justify it.	07
	В	Find Hamiltonian and Hamilton's equation of motion for simple	07
		pendulum. Find Hamiltonian for the following Lagrangian. Hamilton's	
		equation of motion	
		$L = a\dot{x}^{2} + b\dot{y}yx + c\dot{x}\dot{y} + fy^{2}\dot{x}\dot{z} + g\dot{y} - k\sqrt{x^{2} + y^{2}}.$	
0-6		Attempt all questions	(14)
· ·	Α	State and prove the necessary and sufficient condition for canonical	07
		transformation.	
	B	State and prove Fermat's Postulate in optics	07
	Ľ		07
0-6		Attempt all Questions	
Q-0	٨	Obtain Hamilton's equation of motion using variational principal	05
	A P	State and prove Doisson's theorem	05
	D	State and prove POISSON S incorent.	05
	U	In usual notation prove that $[u, v, w]q, p + [v, w, u]q, p + [w, u, v]q, p = 0$	04

